
Precise offsetting of quadratic Bézier curves

Fabian Yzerman
https://blend2d.com/

Based on a scientific article - Revision 1.1

January 18, 2020

Abstract

An iterative algorithm will be developed to generate an approximate offset path
for planar quadratic Bézier curves within a specified maximum deviation. The
offset path consists of one or multiple quadratic Bézier curves and retains G1

continuity at all junctures. Finally, it will be compared against existing methods
in terms of quality and performance.

1 Introduction

Parallel curves in 2D computer graphics are called offset curves. They are needed
when drawing uniformly thick curves which is commonly referred to as stroking. Many
different techniques already exist, two of which will be discussed in the following.
The first method is introduced in Adaptive Subdivision of Bezier Curves and originates
from Anti-Grain Geometry (AGG), a C++ 2D graphics framework that has been
broadly adopted for both open-source and commercial uses [1]. It works by recursively
flattening the original curve to a polyline approximation. Then each point will be offset
to both sides of the curve so that the output is, again, a polyline. One drawback of
this approach is variable quality as it generates the same number of line segments for
each offset path, i.e. usually the inner side has more line segments than needed while
the outer has less. Moreover, the quality decreases with greater offset widths since no
more line segments will be generated without a change of parameters.
Thomas F. Hain’s Fast, Precise Flattening of Cubic Bézier Segment Offset Curves
suggests computing an iterative circular approximation for each side separately [2].

1

Any offset path may have a different number of line segments and the quality criterion
is closely met. However, in certain cases there are visible defects that are not handled.
Another issue with both strategies is that they do not perform optimally under affine
transformations. They are only able to anticipate the dimension with the biggest scale
resulting in more line segments than needed.

In this paper we suggest using a spline of approximated Bézier curves in the offset paths
which will retain more information about the curve’s behavior, such as continuity, than
a polyline. They are easily transformed afterwards and flattening could happen right
before rasterisation so that the desired quality is met without having too many line
segments, even after extreme transformations.
A similar approach has already been discussed in Quadratic bezier offsetting with selec-
tive subdivision by Gabriel Suchowolski, yet the author does not specify an error bound
[3]. We will estimate this approximation error and introduce an iterative method to
offset quadratic Bézier curves within a given quality parameter.

2 Definitions

A Bézier curve of order n is defined by

Cn(t) =
n∑

i=0

(
n

i

)
ti(1− t)n−iPi

with 0 ≤ t ≤ 1. From now on we simply refer to Bézier curves as curves. So for
quadratic and cubic curves it gives

C2(t) = (1− t)2P0 + 2t(1− t)P1 + t2P2

C3(t) = (1− t)3P0 + 3t(1− t)2P1 + 3t2(1− t)P2 + t3P3

Figure 1: Quadratic curve (left) and cubic curve (right)

2

We can also write them in polynomial canonical form:

C2(t) = (P2 − 2P1 + P0)t2 + (2P1 − 2P0)t+ P0

C3(t) = (P3 − 3P2 + 3P1 − P0)t3 + (3P2 − 6P1 + 3P0)t2 + (3P1 − 3P0)t+ P0

An offset curve of C(t) is described as C̄(t) = C(t)+d̄~n(t) where d̄ is the offset distance
and ~n(t) is the unit normal of the derivative C ′(t) such that:

~nx(t) = +
C ′y(t)√

C ′x(t)2 + C ′y(t)2
~ny(t) = − C ′x(t)√

C ′x(t)2 + C ′y(t)2
(1)

Figure 2: Quadratic curve (red) and offset curve (green)

The equations in (1) cannot be trivially expressed by another polynomial curve of the
same order. Thus the offset curve has to be approximated instead.

3 Offsetting of quadratic Bézier curves

Let C(t) be a quadratic curve. We want to approximate the left or right offset path
for C(t) by using one or multiple quadratic curves. The proposed algorithm will split
C(t) into a spline of curves which can be offset by translating the edges of their control
polygon while staying within a specified maximum deviation from the actual offset.

3.1 Translating the control polygon

Let C̄(t) be an offset curve of C(t). Then the curves are defined as:

C(t) = (P2 − 2P1 + P0)t2 + (2P1 − 2P0)t+ P0

C̄(t) = (P̄2 − 2P̄1 + P̄0)t2 + (2P̄1 − 2P̄0)t+ P̄0

3

We want to calculate C̄(t) so that at least G1 continuity is ensured at the endpoints
P̄0 and P̄2. So the idea is to translate P1P0 and P2P1 perpendicular to their tangent
yielding an approximated offset of C(t). The actual order of continuity is close to G2

because the curvatures of C(t) and C̄(t) are approximately equal at their endpoints.

Figure 3: Offsetting of P1P0 and P2P1 to both sides

Thus the control point P̄1 is the intersection of those tangents at t = {0, 1}. With the
offset distance d̄ we define P̄0, P̄1 and P̄2 for left and right offsets by

~n0 = ~n(0) ~n1 = ~n(1) ~n = ~n0 + ~n1

P̄0 = P0 ± d̄~n0 P̄2 = P2 ± d̄~n1 P̄1 = P1 ±
2d̄~n
~n · ~n

Remark. The denominator of the translation vector in P̄1 is a dot product of ~n. The
full derivation is explained in Quadratic bezier offsetting with selective subdivision [3].

3.2 Approximation error

The approximation of C̄(t) introduces an error which depends on the curvature of
C(t). We define the distance function of the two curves as

d(t) = ‖C̄(t)− C(t)‖

and the absolute approximation error:

ε(t) = |d̄− d(t)|

4

Figure 4: Deviation of offset curves calculated from a single curve

It should be mentioned that d(t) differs from the actual distance d(t1, t2) = ‖C̄(t2)−
C(t1)‖ where t1 and t2 is chosen as such the normal of the slope at C(t1) will intersect
at C̄(t2). This difference happens because C̄(t) is an approximation of the actual offset
and thus the parameter t does not run evenly through both curves. However, d(t) has
some interesting properties that will help specifying the approximation error.

Theorem. The distance function d(t) = ‖C̄(t)−C(t)‖ of a non-degenerate curve C(t)
and its offset curve C̄(t) has the following properties:

i) The maximum is at tmax = 1
2 and the two minima are at t = 0 and t = 1.

ii) If the distance d̄ and the angle ϕ between P1P0 and P2P1 of C(t) are constant then
the value of d(tmax) will also be constant.

Proof.

i) We parameterize the curve C(t), along with its offset curve C̄(t), so that we would
be able to generate all possible curves with the help of affine transformations:

P0 =
−1

0

 P1 =
0

0

 P2 =
P2x

P2y


Then solving d′(t) = 0 yields t = {0, 1

2 , 1} with arbitrary d̄ and P2. We take a
look at the second derivative to specify the extrema:

d′′(0) = d′′(1) =
2|d̄|P2y

2(P2x
2 + P2y

2 − P2x

√
P2x

2 + P2y
2)

(P2y
2 + P2x(P2x +

√
P2x

2 + P2y
2))2> 0, if P2y 6= 0 and d̄ 6= 0

= 0, otherwise

5

Similarly d′′(1
2) < 0 if P2y 6= 0 and d̄ 6= 0. So we have got the maximum at

tmax = 1
2 and two minima at t = {0, 1}.

1.0000

1.0005

1.0010

1.0015

1.0020

1.0025

1.0030

1.0035

0.0 0.2 0.4 0.6 0.8 1.0

Figure 5: Graph of d(t) with d̄ = p2x = p2y = 1

Remark. If P2y = 0 or d̄ = 0 there are no extrema due to d′(t) = 0 such that
d(t) = |d̄|. With P2y = 0 and P2x ≥ 0 the curve C(t) is basically a line. However,
if P2y = 0 and P2x < 0 we get a degenerate curve. The latter is a special case and
has to be handled separately by replacing the curve with two lines.

ii) Now we parameterize the curves such that

P0 =
−1

0

 P1 =
0

0

 P2 =
r cos(ϕ)
r sin(ϕ)


and look at the function dmax(ϕ) = d(tmax, ϕ) for 0 ≤ ϕ < π:

dmax(ϕ) = d̄

4(3 + cos(ϕ)) sec
(
ϕ

2

)
(2)

It is obvious that dmax(ϕ) ∼ d̄ so the maximum distance grows linearly with
d̄. Additionally r vanishes from the equation. This shows that if ϕ and d̄ are
constant, d(tmax) will be constant, too.

We have confirmed that d(tmax) ≥ d(t) for 0 ≤ t ≤ 1. Furthermore, dmax(ϕ) ≥ d̄ holds
true for 0 ≤ ϕ < π which means that the maximum possible excursion of C̄(t) always
lies outside the theoretical offset curve.

6

Therefore the maximum approximation error is given:

εmax = |d̄− dmax| (absolute error)

ηmax = |1− dmax

d̄
| (relative error)

Since r vanished from equation (2) and dmax(ϕ) ∼ d̄ we can define the function of the
maximum relative error in dependency of only ϕ as

ηmax(ϕ) = 1− 1
4(3 + cos(ϕ)) sec

(
ϕ

2

)
or alternatively:

ηmax(ϕ) = 2 sec
(
ϕ

2

)
sin4

(
ϕ

4

)
=

2 sin4
(

ϕ
4

)
cos

(
ϕ
2

) (3)

In the plot of ηmax(ϕ) the maximum relative error starts at zero and grows with ϕ.

0.00

0.05

0.10

0.15

0.20

0.25

0.0 0.5 1.0 1.5 2.0 2.5

Figure 6: Graph of ηmax(ϕ)

Remark. Mike Kamermans showed that by approximating circles with quadratic curves
the maximum error depends on a specific angle [4]. Interestingly, this is the same angle
from equation (2). He parameterized symmetric curves so that they have its maximum
deviation at t = 1

2 . The error distance ε(ϕ) of the unit circle is described as

ε(ϕ) = 2 sin4
(
ϕ

4

)√√√√ 1
cos2

(
ϕ
2

)
which is basically the same as equation (3).
He also solved the function for ϕ to calculate the angle within a given error:

ϕ(ε) = 4 arccos


√

2 + ε−
√
ε(2 + ε)

√
2



7

3.3 Split curve by angle

With knowledge of equation (3) we are able to restrict the maximum approximation
error for arbitrary quadratic curve segments by splitting C(t) at the angle ϕ.
For convenience the curve components are written as C ′(t) = at + b so that a and b

are the associated coefficients of the derived polynomial form. To split a curve at the
parameter ts where the angle condition is satisfied, we take the slope

m0 =
C ′y(0)
C ′x(0) = by

bx

at t = 0 and the slope

mt =
C ′y(ts)
C ′x(ts)

= ayts + by

axts + bx

at ts. Thus the angle ϕ between m0 and mt is

tanϕ = m =
∣∣∣∣ m0 −mt

1 +m0mt

∣∣∣∣
If we plug in m0 and mt, then solve for ts it gives

ts = m(bxbx + byby)
|axby − aybx| −m(axbx + ayby)

We split the curve at the parameter ts while ensuring the maximum deviation with
the angle ϕ. The rest of the remaining curve can be processed iteratively as long as
0 < ts < 1. The final segment is reached when ts ≥ 1 so that further splitting is not
needed.

3.4 Handling cusps

If an offset curve is generated and its local curvature radius falls below the offset
width a cusp will appear on the inner path. This usually happens for curves with
sharp turns and there may be critical points where they are not differentiable because
direction vector suddenly reverses. Quadratic curves are not able to represent that
kind of shape.

8

Figure 7: Cusps appearing in offset curves

These specific cases have to be handled separately because the splitting method that
was introduced in section 3.3 does not take them into account.
We are able to calculate the critical points by equating the curvature radius R(t) of
the planar curve C(t) with the offset distance d̄.

R(t) = 1
κ(t) =

(C ′x(t)2 + C ′y(t)2)3/2

C ′x(t)C ′′y (t)− C ′y(t)C ′′x(t)
!= d̄

For quadratic curves we are able to solve this equation for t with a and b being the
coefficients of C ′(t) = at+ b.

t1,2 =
−(axbx + ayby)±

√
(axbx + ayby)2 − (a2

x + a2
y)(b2

x + b2
y − 3

√
d̄2(bxay − axby)2)

a2
x + a2

y

Figure 8: Critical points of C(t) and C̄(t)

t1 and t2 are both locations of the critical points. So if we conditionally split the
curves at 0 < t1 < 1 and 0 < t2 < 1 the cusps will appear at C(t1,2) + d̄~n(t1,2) for that
specific distance. The offset curves are more precise because the cusps will emerge at
the splitting point of the curve and not between its interval.

9

3.5 Algorithm

Finally, all parts of the algorithm will be put together and presented in the following
pseudocode. It requires an input curve, the offset distance and the angle condition to
generate the output path which will consist of one or multiple quadratic curves.

procedure OffsetQuadraticCurve
Set c to input curve
Set offset distance d̄
Set angle condition m

Calculate parameters t1 and t2 where curvature radius equals d̄
if 0 < t1 < 1 then

Split c at t1
end if
if 0 < t2 < 1 then

Split c at t2
end if
for all curve segments of c do

Set cc to current curve segment
loop

Set ts to parameter where angle condition m of cc is met
if 0 < ts < 1 then

Split cc at ts into cc1 and cc2

Translate control polygon of cc1 by d̄ and add to output path
Set cc to cc2

else
Break loop

end if
end loop
Translate control polygon of cc by d̄ and add to output path

end for
end procedure

4 Quality comparison

In the following section we take a comparative look at several approaches, stroking a
single quadratic curve to both sides at half offset width d̄ = w̄

2 each. We desire to meet

10

the quality criterion closely while generating few vertices.
The first method to compare will be the new one keeping the generated offset path
as curves. The second one will also be the new approach but the curves are flattened
to illustrate the final output and to make the visual comparison easier. For that
the iterative flattening technique of Thomas Hain’s Fast, Precise Flattening of Cubic
Bézier Segment Offset Curves (adapted for quadratic curves) is used [5]. The third
one is the method from AGG and the last one an adaption of Hain’s offset algorithm
that works with quadratic curves. To obtain the relative approximation error for New
and NewFlatten we choose ϕ = 22.5 degrees so that ηmax(ϕ) ≈ 0.000188 (i.e. 0.188
pixel for d̄ = 1000). The absolute flattening error for Hain and NewFlatten will be
0.15 pixel. AGG will use the default parameter as proposed by the author [1].
For every case the vertex counts of both offsets path will be compared. We estimate
that Hain meets the quality criterion closest because in the original (cubic) version
94% of all vertices fall within 20% of the quality condition [2]. Thus we will have some
kind of guideline to assess the number of vertices from NewFlattened and AGG.

4.1 Slightly curved

First we parameterize the curve so that New generates a single offset curve segment.

New NewFlatten AGG Hain
3 + 3 vertices 7 + 7 vertices 10 + 10 vertices 7 + 7 vertices

Both NewFlatten and Hain achieve optimal results by meeting the quality condition
closely. We notice that the vertices of those two look identical which arises from using
a very similar method of iterative flattening. AGG is not able to meet the quality

11

criterion as closely because it uses a recursive approach for splitting and thus needs
more vertices than necessary to offset the curve.

4.2 Bent

The next curve is close to a right angle which results in 4 offset curve segments for
New.

New NewFlatten AGG Hain
9 + 9 vertices 17 + 14 vertices 18 + 18 vertices 16 + 13 vertices

In this case Hain achieves the best result of the flattened techniques. There is one
vertex less in each path than NewFlatten. Furthermore, we notice that the vertex
distribution of Hain is smooth while NewFlatten has a few irregular spots due to the
splitting. The quality of AGG is appropriate but, again, both paths have more vertices
than needed.

4.3 Sharp turn

The last curve produces a circle and narrow cusps around the turning point.

New NewFlatten AGG Hain
21 + 21 vertices 21 + 20 vertices 22 + 22 vertices (8) + (5) vertices

12

New produces 10 quadratic curve segments, 8 due to the approximation of almost
180 degrees and another 2 because of the cusp splits. Yet with many quadratic curve
segments NewFlatten manages to have slightly less vertices than AGG. Hain cannot
contribute a meaningful result because the algorithm fails with handling the cusps and
thus is not stable enough for arbitrary input curves.

5 Run-time performance

Finally, we will test the run-time performance with different parameters. Time is
measured from generating both offset paths of a single curve. For this we will denote
the half offset width d̄ = w̄

2 . The tests were done with BenchmarkDotNet (.NET Core
2.1) and run on an AMD Ryzen 2600X CPU under Windows 10 (1803).

5.1 Angle

In the first test we will compare the timings depending on the angle ϕ in degrees and
parameterize curves such that

P0 =
−50

0

 P1 =
0

0

 P2 =
100 cos(ϕ)

100 sin(ϕ)


with a constant offset width w̄ = 1.

Method Angle Mean Error StdDev
New 20 141.4 ns 0.2746 ns 0.2435 ns
NewFlatten 20 604.5 ns 2.8405 ns 2.6570 ns
AGG 20 657.1 ns 1.1076 ns 1.0360 ns
Hain 20 632.3 ns 1.3111 ns 1.0948 ns
New 60 270.6 ns 0.2831 ns 0.2364 ns
NewFlatten 60 1039.7 ns 1.3011 ns 1.2171 ns
AGG 60 955.6 ns 4.5149 ns 4.0023 ns
Hain 60 987.0 ns 1.9502 ns 1.7288 ns
New 100 422.1 ns 1.3179 ns 1.1682 ns
NewFlatten 100 1372.9 ns 2.6274 ns 2.4577 ns
AGG 100 1132.6 ns 3.8131 ns 3.3802 ns
Hain 100 1157.1 ns 0.8279 ns 0.7339 ns

We notice that the performance costs rise with increasing angles. Although NewFlatten

13

has a little advantage at ϕ = 20 the overhead of splitting the curve quickly adds up
and it falls behind at ϕ = 100. The timings of AGG and Hain are closely together.

5.2 Offset width

Now the performance impact of the offset width w̄ is measured. The parameterization
is similar to the previous test:

P0 =
−50

0

 P1 =
0

0

 P2 =
100 cos(20◦)

100 sin(20◦)


With such a small angle we ensure that Hain will not fail because of emerging cusps.

Method Width Mean Error StdDev
New 1 141.1 ns 0.1054 ns 0.0934 ns
NewFlatten 1 607.8 ns 3.1337 ns 2.6168 ns
AGG 1 636.0 ns 2.7962 ns 2.6156 ns
Hain 1 626.8 ns 0.2242 ns 0.2097 ns
New 25 140.8 ns 0.0914 ns 0.0855 ns
NewFlatten 25 600.8 ns 2.9803 ns 2.4887 ns
AGG 25 634.0 ns 1.5795 ns 1.3190 ns
Hain 25 628.9 ns 2.9617 ns 2.7704 ns
New 50 141.4 ns 0.3959 ns 0.3703 ns
NewFlatten 50 605.6 ns 2.6276 ns 2.4579 ns
AGG 50 635.5 ns 2.7409 ns 2.4297 ns
Hain 50 626.1 ns 0.5769 ns 0.4817 ns

The timings show that the performance hardly scales with different widths. Theoreti-
cally, AGG is never affected by width at all and New only will if a cusp induces further
splits which is not the case here. NewFlatten and Hain will have variable execution
times if the arc length of the generated paths differ. Although the outer path gets
longer with increasing offset widths the inner path usually gets shorter.
If we compare the methods with flattening there is no distinct winner. It is however
interesting to notice that flattening is the dominant part in terms of run-time and New
is able to delay those costs. If we included transformations and clipping it would be
possible to only flatten the parts that are needed by the viewport while also closely
meeting the quality condition. This is not easily possible with other techniques and
could result in an overall speedup for specific cases.

14

5.3 Size

Finally, we will compare the timings for randomly distributed curves with offset width
w̄ = 1. All points of the input curve lie inside a square with the side length set to the
size parameter. Although we are not able to guarantee that Hain will not break early,
especially if the size is small, we may still take those figures as a guideline.

Method Size Mean Error StdDev
New 10 278.3 us 0.2710 us 0.2402 us
NewFlatten 10 515.6 us 0.3019 us 0.2677 us
AGG 10 881.2 us 0.8265 us 0.7327 us
Hain 10 124.4 us 0.1139 us 0.0951 us
New 100 254.9 us 0.6605 us 0.6178 us
NewFlatten 100 622.1 us 1.1586 us 1.0271 us
AGG 100 778.5 us 1.4239 us 1.1890 us
Hain 100 380.5 us 0.2225 us 0.2082 us
New 1000 244.1 us 0.4501 us 0.3990 us
NewFlatten 1000 1147.7 us 3.0755 us 2.8768 us
AGG 1000 1309.2 us 1.1140 us 0.9302 us
Hain 1000 1117.0 us 1.5324 us 1.3584 us

In general all timings of the methods with flattening get closer to each other for
increasing size with Hain always being the fastest one. NewFlatten is faster than
AGG for all sizes and gets really close to Hain for the size = 1000.

6 Conclusion

A new algorithm to calculate an offset path from a quadratic curve has been intro-
duced. The approach works independently of resolution and affine transformations.
Furthermore, it ensures G1 continuity at all junctures and closely meets the specified
quality criterion. The method will also be precise and robust if the offset path has
cusps.
Although run-time performance with flattening is slightly slower than other techniques
in some cases, it is much faster without flattening most of the time. It could prove
especially useful if a path received additional transformations after the offsetting.

15

Bibliography

[1] Maxim Shemanarev. Adaptive Subdivision of Bezier Curves. http://antigrain.
com/research/adaptive_bezier/, 2005.

[2] Thomas F. Hain, Sri Venkat R. Racherla, David D. Langan. Fast, Precise Flatten-
ing of Cubic Bezier Segment Offset Curves. 17th Brazilian Symposium on Computer
Graphics and Image Processing, pages 244–249, 2004.

[3] Gabriel Suchowolski. Quadratic bezier offsetting with selective subdivision, 2012.

[4] Mike Kamermans. A Primer on Bézier Curves. https://pomax.github.io/
bezierinfo/#circles, 2013.

[5] Thomas F. Hain, Athar L. Ahmad, David D. Langan. Precise Flattening of Cubic
Bézier Segments. Canadian Conference on Computational Geometry, pages 180–
183, 2004.

16

