
Blend2D

Petr Kobalíček

High-Performance 2D Vector Graphics



About Me

● 20+ years of experience in writing C++ & assembly
– Self-employed; not representing any company

● Focus on writing highly optimized software:
– SIMD optimized algorithms (AVX2, AVX-512)
– Distributed solutions, multi-threading, and  JIT

● Recent projects:
– AsmJit & Blend2D
– Sneller – AVX-512 optimized big-data query engine
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What is Software-Based 2D?

● The rendering pipeline is implemented in software
– Rendering into pixel buffers

● CPU is used for everything:
– Clipping
– Stroking
– Transformation
– Rasterization
– Style fetches
– Composition



The Use of Software-Based 2D Rendering

● Software-based 2D is used extensively in existing software
– It doesn’t require additional hardware (GPU) to run
– Drawing custom UI into 32-bit ARGB pixel buffers is common
– AGG library is one of the most deployed libraries in this case
– Qt Widgets are rendered by QPainter, which is software-based (Qt4+)

● Today’s research focuses mostly on hardware accelerated 2D 
– Causes a stagnation of improving software-based 2D rendering
– Transition to HW rendering of large code-bases in many cases non-trivial
– Presents a unique opportunity for the Blend2D project



Software-based 2D rendering is not a bonus

It’s a safe path



Overview of Existing Open-Source 2D Libraries

● The most used open-source libraries providing SW-based rendering:

AGG (C++) – Not actively developed
Cairo (C) – Not actively developed
Qt (C++) – QPainter’s performance not improving
Skia (C++) – Actively developed by Google for their products

● None of them has been designed from scratch to fully take 
advantage of today’s CPU capabilities



What about a new 2D rendering engine which
offers high-performance SW acceleration?



Blend2D – 2D Vector Graphics Engine

● Designed from scratch for high performance
● Started as an experiment:

– Using AsmJit library to generate optimized 2D pipelines
– Initially just for fun
– Developed independently

● Evolved into a 2D rendering engine:
– 2D rendering context that renders to a pixel buffer
– Released under the Zlib license



Design Goals

● Written in C++, but exports only C API
– C API can be used from most programming languages
– C++ API consists of lightweight inline wrappers around C API
– No exceptions & no dependency on C++ standard library

● One optional third-party dependency – AsmJit

● Easy to build & integrate (CMake)



C++ API Example #1

int main() {

  BLImage img(512, 512, BL_FORMAT_PRGB32);

  BLContext ctx(img);

  BLPath p;

  p.moveTo(494, 194);

    p.lineTo(494, 344);

    p.arcQuadrantTo(344, 344, 344, 494);

    p.lineTo(194, 494);

    p.lineTo(194, 230);

    p.arcQuadrantTo(194, 194, 230, 194);

  p.close();

  p.addCircle(BLCircle(180, 180, 174), BL_GEOMETRY_DIRECTION_CCW);

  ctx.fillAll(BLRgba32(0xFFFFFFFF));

  ctx.fillPath(p, BLRgba32(0xFF000000));

  ctx.end();

  img.writeToFile("example1.png");

  return 0;

}



C++ API Example #2

int main() {

  BLImage img(512, 512, BL_FORMAT_PRGB32);

  BLContext ctx(img);

  BLGradient radial(BLRadialGradientValues(180, 180, 180, 180, 180));

  radial.addStop(0.0, BLRgba32(0xFFFFFFFF));

  radial.addStop(1.0, BLRgba32(0xFFFF6F3F));

  BLGradient linear(BLLinearGradientValues(194, 194, 470, 470));

  linear.addStop(0.0, BLRgba32(0xFFFFFFFF));

  linear.addStop(1.0, BLRgba32(0xFF3F9FFF));

  ctx.clearAll();

  ctx.fillCircle(BLCircle(180, 180, 174), radial);

  ctx.setCompOp(BL_COMP_OP_DIFFERENCE);

  ctx.fillRoundRect(BLRoundRect(194, 194, 300, 300, 40), linear);

  ctx.end();

  img.writeToFile("example2.png");

  return 0;

}



More Examples & Docs

● Documentation
– blend2d.com

● Interactive
– fiddle.blend2d.com

(please don’t overload the server :})







Blend2D Optimizations Overview

● JIT pipeline generation

● Analytic rasterization improvements

● Multi-threaded rendering



JIT Pipeline Generation

● Compilation of 2D pipelines at runtime
– Optimized for the host CPU
– Inlined 3 stages of a pipeline:

● Coverage stage
● Style Fetch stage
● Composition stage

– Data between stages is transferred via CPU registers
– Processing pixels at bands => Multiple scanlines per call



JIT Pipeline Generation

● Requirements
– The generated pipeline should be faster than an equivalent written in C++
– A single pipeline must be generated in a sub-millisecond time

● Solution
– Join multiple pre-implemented parts written in assembly
– Use AsmJit to perform register allocation and machine code generation

● Take advantage of host CPU extensions
– Use general purpose extensions (BMI, BMI2, …) when available
– Take advantage of SIMD levels – SSE2+, AVX2+FMA, AVX512+
– What about “machine learning” extensions such as AVX512_VNNI?



Comparison of Static and JIT Pipelines
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Analytic Rasterization



Analytic Rasterization Basics

● Rasterization
– The rasterizer iterates over edges and accumulates area and cover for each pixel 

it intersects
– Area and cover form a cell; each associated with a pixel at [x, y]
– Calculating the final pixel coverage:

● Cover values are accumulated, area values are used independently
● Alpha = calculate_coverage(sum(cover[0:x]) - area[x])

● Association with cells and pixels is important:
– Traditionally, linked-list (Qt) or a vector of cells (AGG) is used
– Not really efficient when a lot of edges cross a single scanline



Analytic Rasterization Improvements

● Dense cell-buffer:
– Each pixel has a pre-allocated cell
– Cells are consecutive => no need to store cover and area values separately
– By only using a single value per cell, the storage has been reduced by 50%

● Shadow bit-buffer
– In order to maintain which cells are non-zero, a shadow bit-buffer has been 

introduced
– Each bit describes 4 cells, thus a single 64-bit value represents 256 cells / pixels
– To quickly find the coordinate of non-zero cells, use trailing/leading bit-count



Multi-Threaded Rendering
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Multi-Threaded Rendering

● Motivation
– Screens are getting wider => more pixels to render
– Increasing the CPU frequency is not practical anymore
– Modern CPUs have 8+ cores – a lot of computational power

● Premise
– Offer a multi-threaded rendering context for complex workloads
– It must use the same API as single-threaded renderer
– It should not regress the performance even in border cases



Work Distribution

● Work Separation
– Each worker thread has pre-assigned parts of the image it operates on
– There are two types of work each thread does

● Render command – changes pixels of the target image – invokes 2D pipelines
● Compute job – work to do before a render command can be processed

(edge building, stroking, font outline extraction, or a combination)

● Work Serialization
– In MT rendering mode the frontend has to serialize instead of dispatch:

● Ensure that shared states match the current rendering context state
● If a render request needs a compute job, create it and add it to a job queue
● Add a render command to the command queue



Performance Comparison

Explore at blend2d.com/performance.html



Performance Comparison: CPU: Ryzen 7950X | 1000 render operations | 8x8 | 16x16 | 32x32 | 64x64 | 128x128 | 256x256



Performance Comparison: CPU: Ryzen 7950X | 1000 render operations | 8x8 | 16x16 | 32x32 | 64x64 | 128x128 | 256x256



Performance Comparison: CPU: Ryzen 7950X | 1000 render operations | 8x8 | 16x16 | 32x32 | 64x64 | 128x128 | 256x256



Performance Comparison: CPU: Ryzen 7950X | 1000 render operations | 8x8 | 16x16 | 32x32 | 64x64 | 128x128 | 256x256



Performance Comparison: CPU: Ryzen 7950X | 1000 render operations | 8x8 | 16x16 | 32x32 | 64x64 | 128x128 | 256x256



Performance Comparison: CPU: Ryzen 7950X | 1000 render operations | Line Width = 3



Benchmarking Tool Output



Blend2D – Future Plans

● 2D Effects
– Geometry effects, pixel effects, convolution
– Shading language – being discussed by the community

● Optimizations
– Rasterizer can still be optimized (mostly scalar code)
– Text rendering doesn’t use caching at the moment

● Functionality
– Non-rectangular clipping – a rasterized path or user-provided mask
– Better text rendering – text shaping, full OpenType GSUB/GPOS support

● GPU Acceleration
– Blend2D started as a library to offer software-based rendering first
– But the rendering context is abstract and can offer GPU acceleration in the future



Thank You!

Time for Discussion & QA

 Check out blend2d.com for more information



Appendix – Solid SrcOver Composition (SIMD)

SSE2: 8 pixels           | AVX2: 16 pixels            | AVX512: 32 pixels
                         |                            | 
movaps xmm1, [rax]       | vpmovzxbw ymm3, [rax]      | vpmovzxbw zmm1, [rax]      
movaps xmm2, [rax+16]    | vpmovzxbw ymm1, [rax+16]   | vpmovzxbw zmm0, [rax+32]   
movaps xmm3, xmm1        | vpmovzxbw ymm2, [rax+32]   | vpmovzxbw zmm2, [rax+64]   
punpckhbw xmm3, xmm7     | vpmovzxbw ymm0, [rax+48]   | vpmovzxbw zmm3, [rax+96]   
punpcklbw xmm1, xmm7     | vpmullw ymm3, ymm3, ymm4   | vpmullw zmm1, zmm1, zmm4
movaps xmm0, xmm2        | vpmullw ymm1, ymm1, ymm4   | vpmullw zmm0, zmm0, zmm4            
punpckhbw xmm0, xmm7     | vpmullw ymm2, ymm2, ymm4   | vpmullw zmm2, zmm2, zmm4
punpcklbw xmm2, xmm7     | vpmullw ymm0, ymm0, ymm4   | vpmullw zmm3, zmm3, zmm4
pmullw xmm1, xmm4        | vpaddw ymm3, ymm3, ymm5    | vpaddw zmm1, zmm1, zmm5
pmullw xmm3, xmm4        | vpaddw ymm1, ymm1, ymm5    | vpaddw zmm0, zmm0, zmm5
pmullw xmm2, xmm4        | vpaddw ymm2, ymm2, ymm5    | vpaddw zmm2, zmm2, zmm5
pmullw xmm0, xmm4        | vpaddw ymm0, ymm0, ymm5    | vpaddw zmm3, zmm3, zmm5
paddw xmm1, xmm5         | vpmulhuw ymm3, ymm3, ymm6  | vpmulhuw zmm1, zmm1, zmm6
paddw xmm3, xmm5         | vpmulhuw ymm1, ymm1, ymm6  | vpmulhuw zmm0, zmm0, zmm6
paddw xmm2, xmm5         | vpmulhuw ymm2, ymm2, ymm6  | vpmulhuw zmm2, zmm2, zmm6
paddw xmm0, xmm5         | vpmulhuw ymm0, ymm0, ymm6  | vpmulhuw zmm3, zmm3, zmm6
pmulhuw xmm1, xmm6       | vpackuswb ymm1, ymm3, ymm1 | vpmovwb [rax], zmm1        
pmulhuw xmm3, xmm6       | vpackuswb ymm0, ymm2, ymm0 | vpmovwb [rax+32], zmm0     
pmulhuw xmm2, xmm6       | vpermq ymm1, ymm1, 0xD8    | vpmovwb [rax+64], zmm2     
pmulhuw xmm0, xmm6       | vpermq ymm0, ymm0, 0xD8    | vpmovwb [rax+96], zmm3     
packuswb xmm1, xmm3      | vmovdqu [rax], ymm1        | 
packuswb xmm2, xmm0      | vmovdqu [rax+32], ymm0     | 
movaps [rax], xmm1       |                            | 
movaps [rax+16], xmm2    |                            | 



Appendix – Comparison of ST and MT Rendering (1000 commands)



Appendix – Comparison of ST and MT Rendering (1000 commands)



Appendix – Comparison of ST and MT Rendering (1000 commands)
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